An Existence Theorem for Quasilinear Systems

نویسنده

  • HAIYAN WANG
چکیده

This paper deals with the existence of positive radial solutions for the quasilinear system div(|∇ui|p−2∇ui) + λf (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, λ > 0, x ∈ RN . The f i, i = 1, . . . , n, are continuous and non-negative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1 |ui|, f i 0 = lim ‖u‖→0 f i(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1, . . . , fn), f0 = ∑n i=1 f i 0. We prove that the problem has a positive solution for sufficiently small λ > 0 if f0 = ∞. Our methods employ a fixed-point theorem in a cone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator

The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.

متن کامل

ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

An existence result for a class of quasilinear singular competitive elliptic systems

In this paper we establish existence and regularity of positive solutions for a singular quasilinear elliptic system with competitive structure. The approach is based on comparison properties, a priori estimates and the Schauder’s …xed point theorem.

متن کامل

On a Class of Quasilinear Elliptic Systems in R Involving Critical Sobolev Exponents

We study here a class of quasilinear elliptic systems involving the p-Laplacian operator. Under some suitable assumptions on the nonlinearities, we show the existence result by using a fixed point theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006